Ecc PHP Extension Reference Documentation

CkEcc

Current Version: 10.1.2

Elliptical Curve Cryptography class for generating ECDSA keys, computing shared secrets, and creating and verifying ECDSA signatures. Supports the following curves:

  • secp256r1 (also known as P-256 and prime256v1)
  • secp384r1 (also known as P-384)
  • secp521r1 (also known as P-521)
  • secp256k1 (This is the curve used for Bitcoin)
  • secp192r1
  • secp224r1
  • brainpoolP160r1
  • brainpoolP192r1
  • brainpoolP192r1
  • brainpoolP224r1
  • brainpoolP256r1
  • brainpoolP320r1
  • brainpoolP384r1
  • brainpoolP512r1

Additional curves will be supported in the future.

Object Creation

$obj = new CkEcc();

Properties

AsnFormat
bool get_AsnFormat()
void put_AsnFormat(bool boolVal);
Introduced in version 9.5.0.97

If true, the ECDSA signatures produced by this object will use ASN.1 format. Otherwise the ECDSA signature will be a concatenation of the two raw byte arrays for r and s.

ECDSA signatures have two equal sized parts, r and s. There are two common formats for encoding the signature:

(a) Concatenating the raw byte array of r and s
(b) Encoding both into a structured ASN.1 / DER sequence.

The default value of this property is true, which is to use ASN.1, which is the behavior of earlier versions of Chilkat before this property was added.

top
DebugLogFilePath
string debugLogFilePath();
void put_DebugLogFilePath(string strVal);

If set to a file path, this property logs the LastErrorText of each Chilkat method or property call to the specified file. This logging helps identify the context and history of Chilkat calls leading up to any crash or hang, aiding in debugging.

Enabling the VerboseLogging property provides more detailed information. This property is mainly used for debugging rare instances where a Chilkat method call causes a hang or crash, which should generally not happen.

Possible causes of hangs include:

  • A timeout property set to 0, indicating an infinite timeout.
  • A hang occurring within an event callback in the application code.
  • An internal bug in the Chilkat code causing the hang.

More Information and Examples
top
LastErrorHtml
(read-only)
string lastErrorHtml();

Provides HTML-formatted information about the last called method or property. If a method call fails or behaves unexpectedly, check this property for details. Note that information is available regardless of the method call's success.

top
LastErrorText
(read-only)
string lastErrorText();

Provides plain text information about the last called method or property. If a method call fails or behaves unexpectedly, check this property for details. Note that information is available regardless of the method call's success.

top
LastErrorXml
(read-only)
string lastErrorXml();

Provides XML-formatted information about the last called method or property. If a method call fails or behaves unexpectedly, check this property for details. Note that information is available regardless of the method call's success.

top
LastMethodSuccess
bool get_LastMethodSuccess()
void put_LastMethodSuccess(bool boolVal);

Indicates the success or failure of the most recent method call: true means success, false means failure. This property remains unchanged by property setters or getters. This method is present to address challenges in checking for null or Nothing returns in certain programming languages.

top
Utf8
bool get_Utf8()
void put_Utf8(bool boolVal);

When set to true, all "const char *" arguments are interpreted as utf-8 strings. If set to false (the default), then "const char *" arguments are interpreted as ANSI strings. Also, when set to true, and Chilkat method returning a "const char *" is returning the utf-8 representation. If set to false, all "const char *" return values are ANSI strings.

top
VerboseLogging
bool get_VerboseLogging()
void put_VerboseLogging(bool boolVal);

If set to true, then the contents of LastErrorText (or LastErrorXml, or LastErrorHtml) may contain more verbose information. The default value is false. Verbose logging should only be used for debugging. The potentially large quantity of logged information may adversely affect peformance.

top
Version
(read-only)
string version();

Version of the component/library, such as "10.1.0"

More Information and Examples
top

Methods

GenEccKey
CkPrivateKey GenEccKey(string curveName, CkPrng prng);
Introduced in version 9.5.0.52

Generates an ECDSA private key. The curveName specifies the curve name which determines the key size. The prng provides a source for generating the random private key.

The following curve names are accepted:

  • secp256r1 (also known as P-256 and prime256v1)
  • secp384r1 (also known as P-384)
  • secp521r1 (also known as P-521)
  • secp256k1 (This is the curve used for Bitcoin)
  • secp192r1
  • secp224r1
  • brainpoolP160r1
  • brainpoolP192r1
  • brainpoolP192r1
  • brainpoolP224r1
  • brainpoolP256r1
  • brainpoolP320r1
  • brainpoolP384r1
  • brainpoolP512r1

Returns null on failure

top
GenEccKey2
CkPrivateKey GenEccKey2(string curveName, string encodedK, string encoding);
Introduced in version 9.5.0.55

Generates an ECDSA private key using a specified value for K. The curveName specifies the curve name which determines the key size. The encodedK is the encoded value of the private key. The encoding is the encoding used for encodedK, which can be "hex", "base64", "decimal", etc.

Note: This method is typically used for testing -- such as when the same private key is desired to produce results identical from run to run.

The following curve names are accepted:

  • secp256r1 (also known as P-256 and prime256v1)
  • secp384r1 (also known as P-384)
  • secp521r1 (also known as P-521)
  • secp256k1 (This is the curve used for Bitcoin)
  • secp192r1
  • secp224r1
  • brainpoolP160r1
  • brainpoolP192r1
  • brainpoolP192r1
  • brainpoolP224r1
  • brainpoolP256r1
  • brainpoolP320r1
  • brainpoolP384r1
  • brainpoolP512r1

Returns null on failure

More Information and Examples
top
SharedSecretENC
bool SharedSecretENC(CkPrivateKey privKey, CkPublicKey pubKey, string encoding, CkString outStr);
string sharedSecretENC(CkPrivateKey privKey, CkPublicKey pubKey, string encoding);
Introduced in version 9.5.0.52

Computes a shared secret given a private and public key. For example, Alice and Bob can compute the identical shared secret by doing the following: Alice sends Bob her public key, and Bob calls SharedSecretENC with his private key and Alice's public key. Bob sends Alice his public key, and Alice calls SharedSecretENC with her private key and Bob's public key. Both calls to SharedSecretENC will produce the same result. The resulting bytes are returned in encoded string form (hex, base64, etc) as specified by encoding.

Note: The private and public keys must both be keys on the same ECDSA curve.

Returns true for success, false for failure.

top
SignBd
bool SignBd(CkBinData bdData, string hashAlg, string encoding, CkPrivateKey privKey, CkPrng prng, CkString outStr);
string signBd(CkBinData bdData, string hashAlg, string encoding, CkPrivateKey privKey, CkPrng prng);
Introduced in version 9.5.0.85

This method is the same as SignHashENC, except the actual data to be signed and the name of the hash algorithm is passed in. The following hash algorithms are supported: sha256, sha384, and sha512.

Returns true for success, false for failure.

top
SignBdUsingCert
bool SignBdUsingCert(CkBinData bdData, string hashAlg, string encoding, CkCert cert, CkString outStr);
string signBdUsingCert(CkBinData bdData, string hashAlg, string encoding, CkCert cert);
Introduced in version 9.5.0.91

Same as SignBd, but instead uses the private key of a certificate (assuming the cert's private key is ECDSA).

Returns true for success, false for failure.

top
SignHashENC
bool SignHashENC(string encodedHash, string encoding, CkPrivateKey privkey, CkPrng prng, CkString outStr);
string signHashENC(string encodedHash, string encoding, CkPrivateKey privkey, CkPrng prng);
Introduced in version 9.5.0.52

Computes an ECDSA signature on a hash. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoding, such as "base64", "hex", etc. is passed in encoding. The ECDSA private key is passed in the 3rd argument (privkey). Given that creating an ECDSA signature involves the generation of random numbers, a PRNG is passed in the 4th argument (prng). The signature is returned as an encoded string using the encoding specified by the encoding argument.

Returns true for success, false for failure.

top
SignHashUsingCert
bool SignHashUsingCert(string encodedHash, string encoding, CkCert cert, CkString outStr);
string signHashUsingCert(string encodedHash, string encoding, CkCert cert);
Introduced in version 10.1.0

Computes an ECDSA signature on a hash. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoding, such as "base64", "hex", etc. is passed in encoding. The certificate having a private key is passed in cert. The signature is returned as an encoded string using the encoding specified by the encoding argument.

Returns true for success, false for failure.

top
VerifyBd
int VerifyBd(CkBinData bdData, string hashAlg, string encodedSig, string encoding, CkPublicKey pubkey);
Introduced in version 9.5.0.85

This method is the same as VerifyHashENC, except the actual data to be verified and the name of the hash algorithm is passed in. The following hash algorithms are supported: sha256, sha384, and sha512.

top
VerifyHashENC
int VerifyHashENC(string encodedHash, string encodedSig, string encoding, CkPublicKey pubkey);
Introduced in version 9.5.0.52

Verifies an ECDSA signature. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoded signature is passed in encodedSig. The encoding of both the hash and signature, such as "base64", "hex", etc. is passed in encoding. The ECDSA public key is passed in the last argument (pubkey).

The method returns 1 for a valid signature, 0 for an invalid signature, and -1 for any other failure.

top